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Epidemiological Informing of the Population  
in Cities: Models and Their Application

Abstract

With an increase in population density and 
contacts between people and the emergence 
of new biological viruses, the threat of various 

epidemics is growing. Countering these threats involves 
the implementation of large-scale preventive, therapeutic, 
and other measures, both before the start of and during 
the epidemic. Epidemiological informing of the population 
plays an important role in such counteraction. The currently 
used models of sharing epidemiological  information of the 
population of cities largely do not meet the needs of practice. 
This negatively affects the effectiveness of the response 
to epidemics. The purpose of the study is to develop new 
models and justify their applicability for understanding the 
processes in public health, the impact of epidemics on the 
economy and business. For the quantitative substantiation 
of epidemiological information spreading programs 
(scenarios), a method based on new models of epidemic 
development in related cities is proposed.  The method is 
characterized by a new target  function that links economic 
efficiency with the state of health of the population in an 
epidemic. The models differ from the known solutions both 

in the space of the selected states of the processes under 
study and in the connections between them.

 Using the developed method, seven possible programs of 
sharing epidemiological information with the population of 
related cities were analyzed and the best of them werefound 
for specific conditions. New regularities have been 
established between the parameters of the programs being 
implemented and the results of the impact on the health 
and performance capability of the population. It is shown 
that an epidemic can develop in cities that are differently 
connected to one another by vehicles. The proposed method 
allows for quicklying the best epidemiological information 
sharing programs for the population. The models underlying 
this method make it possible to predict public health and 
the impact of epidemics on the economy and businesses, 
depending on the planned measures to counteract epidemics. 
They are also applicable for determining the sources and time 
of an infection’s onset. The obtained simulation results are 
in good agreement with the known facts. The method can 
be applied in advanced information systems to support the 
adoption of far-sighted decisions to counteract epidemics.
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Introduction
A key aspect of forecasting public health and as-
sessing the impact of epidemics on the economy 
and businesses, is the sharing of epidemiological 
information with the population in cities connect-
ed by large passenger flows (further on referred to 
as “connected cities”). The success of a comprehen-
sive response to epidemics largely depends upon 
the effectiveness of such information programs 
and underlying models and approaches which al-
low one to build alternative scenarios (Papa et al., 
2020; Abdulai et al., 2021).
General issues of informing people about pos-
sible threats to life and health have been studied 
in sufficient detail (Liu et al., 2020; Lukyanovich, 
Aflyatunov, 2015). Attempts have been made to as-
sess the impact of information sources on people’s 
situational awareness and social distancing (Wu 
et al., 2012; Qazi et al., 2020; Tiwari et al., 2021), 
including in the context of media coverage of the 
COVID-19 pandemic and early proliferation of 
the infection in China (Liu et al., 2020; Zhou et 
al., 2020). A number of models exist, each with its 
own advantages and disadvantages under particu-
lar conditions (Chubb, Jacobsen, 2009; Nadella et 
al., 2020), which help predict the development of 
epidemics (Newbold, Granger, 1974; Holko et al., 
2016; Holko et al., 2020; Hu et al., 2020; Levash-
kin et al., 2021; Medrek, Pastuszak, 2021; Katris, 
2021; Osipov et al., 2021).1 Various approaches are 
applied to monitor the situation and process sta-
tistical data in order to set parameters and initial 
states for the application of these models, but little 
attention is paid to assessing the potential impact 
of sharing epidemiological information on public 
health. Methods for assessing the associated po-
tential economic risks are also insufficiently de-
veloped. The imperfection of existing approaches 
makes it difficult to develop effective programs to 
inform the public about epidemics, which nega-
tively affects the response to them.
The proposed new method of substantiating epi-
demiological information programs (scenarios) for 
the population of connected cities, and the asso-
ciated models are designed to more effectively re-
spond to pandemics by taking into account the in-
formational aspect of their development and eco-
nomic losses. Such models will help one to more 
accurately assess the efforts to counter epidemics 
through the prism of information policy and popu-
lation response, which affect the natural dynamics 
of disease proliferation.

Materials and Methods
Method
Epidemiological information programs are based 
on the analysis of public health, economic and 
business data, features of the epidemic specific to 
connected cities, and possible response measures. 
Such information sharing is conducted regularly, 
according to the prevailing conditions. The pro-
gram design, which should take into account po-
tential effects on public health and the economic 
costs, should be aimed at developing an optimal 
epidemiological information program. Based on 
the evaluation results, programs that do not meet 
the requirements are excluded, and alternative 
ones are presented for consideration. Then all pro-
grams meeting acceptable public health criteria are 
evaluated in terms of economic indicators to select 
the most efficient ones. When the optimal program 
is identified, it is translated into specific actions. 
The substantiated program is communicated to 
the public via media in the form of instructions to 
overcome the epidemic.
Thus, the objective is to design an epidemiologi-
cal information program (PRGo) whose implemen-
tation would create the highest economic effect 
(Wo(PRGo, ∆T)) during the given time interval ∆T, 
which would meet the relevant public health and 
implementation cost requirements.
The effects (Ws(PRGs, ∆T) of implementing pro-
gram PRGs during the interval ∆T = TK – T0 can be 
defined as follows:

 
where
Vki (PRGs,∆Tk) = Vio /(1 + ∆tki (Iks  PRGs)/τ) is the 
economic performance of the population per unit 
of time in the i-th state during the k-th interval 
∆Tk = TK+1 – Tk of the implementation of the s-th 
epidemiological information program;
Vio is the average economic performance of the 
population in the i-th state without the restrictive 
measures;
τ is the time interval for estimating Vio;
∆tki (Iks  PRGs) is the additional time needed to 
achieve the same result when restrictive measures 
are in place;
Iks are the elements of program PRGs implemented 
during the k-th interval.

1  See also: https://docs.idmod.org/projects/emod-environmental/en/latest/model-seir.html, accessed 22.01.2022.
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Pki (PRGs, Tk ≤ t < Tk+1) is the probability that the 
population would be in the i state during the k-th 
interval of implementation of the s-th epidemio-
logical information program.
The desired program PRGs = PRGs (Iks; k = 0.1, …, 
K) may comprise K information blocks Iks, and 
must belong in the set of effective programs which 
meet the given requirements.
The algorithm for solving this problem comprises 
the following steps:
1. Assessing the initial state of public health, the 
current dynamics of the epidemic, the employment 
in manufacturing and service sector, and the scope 
for informing the public.
2. Designing effective epidemiological information 
programs meeting the specified requirements.
3. Assessing each program’s impact upon the re-
sulting performance indicator and identifying the 
optimal one.
For the purposes of this assessment, the impact of 
PRGs programs on the development model param-
eters and the course of the epidemic must be deter-
mined for each considered time interval. Then with 
the help of this model and taking into account its 
initial states, probabilities Pki (PRGs, t) can be esti-
mated. Knowing these probabilities and Vki(PRGs,t), 
it is possible to estimate the damage prevented over 
the relevant time interval. Vki(PRGs,t) values can 
significantly vary for different population states 
and strongly depend upon PRGs parameters. To es-
timate the damage prevented during the next k + 1 
time interval, the previous calculation of Pki (PRGs, 
t) should be taken into account.

Epidemic Development Models 
in Connected Cities
New models that take into account an extended 
range of possible factors affecting epidemiological 
development are suggested to determine Pki (PRGs, 
t). One of them is a state graph of epidemiologi-
cal development in two connected cities (Figure 1). 
The graph vertices in Figure 1 corresponds to the 
population states of the first (1-5) and second (6-
10) cities. The arcs in the graph presented in Figure 
1 reflect the transitions of the epidemic from one 
state to another. These transitions are described in 
Table. 1. This model is different from known solu-
tions (Browne et al., 2015) primarily due to its tak-
ing into account additional important correlations.
In line with the probability theory limit theorem 
for event flows, the graph in Figure 1 can corre-
spond to a system of 10 differential equations relat-
ing the probabilities of the selected states (Box 1). 
Rates of transition from one state to another λij 
serve as these equations’ parameters, which de-
pend upon the characteristics of the implemented 

epidemiological information programs. This de-
pendence is manifested in the form of negative and 
positive adjustments of λij reflecting the change in 
the nature of transitions between the model states 
corresponding to each control action.
As a result of communicating epidemiological in-
formation to the population of the first city in the 
scope of the program being implemented, the pa-
rameters of transitions 1→2, 3→4, 1→6, 2→7, 3→8, 
and 4→9 may change. For the second city, the same 
applies to transitions 6→7, 8→9, 6→1, 7→2, 8→3, and 
9→4.
The epidemic development can be scaled up to 
cover multiple cities (or countries) simultaneously, 
by enlarging the states presented in Figure 1. For 
example, states 2, 3 and 1, 5 can be combined, since 
new births compensate for population decline. 
State 4 remains unchanged. Thus, the epidemiolog-
ical model of each individual city in a generalized 
form can be formalized by three related population 
states. By combining individual city models on the 
basis of the population’s infection state, higher-lev-
el epidemic development models can be developed 
(Figure 2).
The models presented in Figures 2a and 2b can be 
incorporated in differential equation systems to 
analyze the process dynamics relative to the initial 

Figure 1. State graph of epidemic development  
in two connected cities

Note: vertices 1, 6 - healthy population susceptible to the 
infection; 2, 7 - infected population displaying no symptoms 
(infection carriers); 3, 8 - infected population with symptoms; 4, 
9 — healthy population with immunity; 5, 10 - dead population. 
Each state is associated with the relative number of people in 
that state. Normalisation is performed in relation to the entire 
population of both cities.
Source: authors.
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Таble 1. Transitions of the epidemic from one state to another

Transitions Description
1 2, 6 7 Healthy population vulnerable to the infection (states 1, 6) over time can move on to states 2, 7 

(asymptomatic disease). The transition rate depends on the probabilities of states 3, 8. This dependence is 
shown in Fig. 1 by dash-dotted arrows.

2 3, 7 8 Infected population of the cities displaying no symptoms (states 2, 7) move on to states 3, 8 - infected 
population with symptoms of the disease.

3 4, 8 9 After treatment, infected population with symptoms (states 3, 8) move on to states 4, 9 - healthy 
population with immunity.

1 4, 6 9 After vaccination, healthy population vulnerable to the infection (states 1, 6) move on to states 4, 9.
4 1, 9 6 After losing the immunity, population of the cities in states 4, 9, return to states 1, 6.
1 6, 6 1, 2 7, 7 2, 3 8, 
8 3, 4 9, 9 4

Transitions caused by people’s travelling between the cities using different modes of transport.

1 5, 2 5, 3 5, 4 5, 6 10, 
7 10, 8 10, 9 10

Transitions caused by mortality.

5 1, 4 4, 10 6, 10 9 Transitions caused by births.
Source: authors.

states. Such models allow for predicting epidemic 
proliferation across multiple cities depending on 
the epidemiological information programs imple-
mented there. Forecasting of this kind requires 
data on the model parameters and on the initial 
process states determined by the probabilities Pi(t 
= 0) that at the time t = 0, the process would be in 
the i-th states. Since the period of time is divided 
into intervals, the relevant times are Tk = 0. Each 
of the probabilities Pi(t = 0) can be defined as the 
relative number of people in the i-th state at a given 
time.
Since model parameters such as rate of transition 
from one state to another λij depend on epidemic 
response measures, the impact of the epidemio-

logical information program PRGs on changes in λij 
can be estimated according to the rule:

λij = λij
* ± βijgij (PRGs),

where
βij is the maximum possible change in the transi-
tion rate ij depending on the epidemic response 
measures taken;
gij (PRGs) is the probability that the implementa-
tion of the PRGs program will achieve changes in 
λij equal to βij.
Thus, knowing the initial process states and the 
parameters of the applied model allows one, by 
resolving the corresponding system of differential 
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equations using known methods, to achieve pre-
dictive probabilities Pki (PRGs, Tk ≤ t < Tk+1) = Pki 
(λij

* ± βij gij (PRGs), Tk ≤ t < Tk+1) that the popula-
tion would be in the i-th state during the k-th time 
interval if the s-th epidemiological information 
program is implemented. Given these probabilities, 
it becomes feasible to forecast the economic effects 
Ws (PRGs, ∆T) of implementing programs (PRGs) 
over the interval ∆T = TK – T0.
Based on the simulation results, morbidity prolif-
eration in cities over time can be estimated. Chang-
ing the initial model conditions and implementing 
various administrative measures in the scope of 
PRGs allow one to build alternative epidemic devel-
opment scenarios and predict the programs’ impact 
upon public health and the economy. A particular 
benefit of the described models (Figures 2a and 2b) 
may be associated with the ability to identify the 
place and time of the onset of the infection, i.e., to 
conduct a reverse analysis of the epidemic develop-
ment in connected cities.

Initial Data
The statistics of COVID-19 proliferation in Rus-
sian regions and federal-level cities (Table 2) for 
the period from March 6 to December 30, 2020 was 
used as the initial data for modeling the impact of 
epidemiological information programs. To analyze 
the impact of epidemiological information sharing 
of the population with the system of equations pre-
sented in Figure 2, the values given in Table 3 were 
applied as initial transition rates. Average values of 
population performance in the i-th state with no 
restrictive measures in place were set in relative 
units, based on known examples (Bellman, 1983): 
(1; 0.75; 0.3; 1; 0; 0; 0; 0; 0; 0; 0).

Results and Discussion
Problems (1) - (5) were solved using the MatLab 
software package. To begin with, let us consider 
the example of the interaction between two cities 
with a heavy passenger flow in both directions, in 
which, despite the different population size, similar 
epidemiological information programs are being 
implemented along with typical “safe period” pre-
ventive measures. In one of the cities, an infection 
source emerges and the epidemic begins to spread. 
How quickly will the situation develop in the first 
and second cities if epidemiological information 
sharing with the public is not adjusted?
To answer this question, the epidemic’s develop-
ment was modeled for a period of 150 weeks (Fig-
ure  3). The initial states in the equations system 
of the model presented in Figure 2 were set as 
(0.39888; 0.001; 0.00; 0.00; 0.00; 0.00012; 0.59982; 
0.0; 0.0; 0.0; 0.0; 0.00018). Table 3 was used to set 
the transition rate values. Figure 3a shows the 
change in the relative number of healthy people 

Name URL
An interactive web-
based dashboard to 
track COVID-19 in real 
time.

https://www.thelancet.com/
journals/laninf/article/PIIS1473-
3099(20)30120-1/fulltext, accessed 
20.01.2022.

Our World in Data. 
Coronavirus Pandemic 
(COVID-19)

https://ourworldindata.org/
coronavirus, accessed  20.01.2022.

Online COVID-19 
Coronavirus Map

https://coronavirus-monitor.info/, 
accessed  20.01.2022.

Source: authors.

Таble 2. Online resources for monitoring the 
proliferation of COVID-19 pandemic

Figure 2. Epidemic development models in connected cities

а)  epidemic development in fully connected cities b) sequential cyclic proliferation of the epidemic

Note: selected population states in individual cities are shown by dotted circles; 1, 4, 7, 10 - healthy population vulnerable to infection; 2, 5, 8, 
11 - infected population; 3, 6, 9, 12 - healthy population with immunity. Transitions  3 1, 6 4, 9 7, 12 10 primarily depend on the duration of 
immunity. When it disappears, the population moves from states 3, 6, 9, 12 to states 1, 4, 7, and 10.
Source: authors.
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population of both cities. The number of infected 
with symptoms in this city peaked only after 14 
months, while in the second city it happened after 
16.5 months.
The overall impact of the epidemiological informa-
tion program under consideration (PRG1) on the 
health and economic indicators of the population 
in connected cities is presented in Table 4. The ta-
ble also shows the estimated effect of alternative 
epidemiological information programs designated 
PRG 2–7. Brief descriptions of these programs 
(without specific effects on model parameters) are 
given in Table 5.
When, in contrast to PRG1, the PRG2 program in-
forms the population of the first city about the need 
to wear protective masks and maintain social dis-
tance, the rate of the transition 1 → 2 in the model 
decreases. At the same time additional time costs 
∆tki (Iks(Z)  PRGs(Z)) arise, which in the example un-
der consideration amount to 0.1 of τ. PRG3 differs 
from PRG2 in that similar protective measures are 
taken in the first and second cities simultaneously. 
If protective measures are taken only in the first city 
(PRG2), the total economic effect amounts to 138.8 
CEU, but when such measures are implemented in 
the two cities at the same time (PRG3), it amounts to 
131.5 CEU. According to these estimates, economic 
performance compared to PRG1 declines, while peak 
infection rates in both cities shift to the right and 
decrease, along with mortality. If the implemented 
programs provide for vaccination (PRG4,5), in the 
first (PRG4) or in both cities (PRG5), the simulation 
results suggest higher values of public health indica-
tors can be achieved during the epidemic along with 
higher productivity.
If epidemiological information sharing programs 
limit the links between the cities, infection rates 
differ from the above examples. PRG6 provides for 
informing the public about restrictions on travel 
between the first and second cities starting from 
week 50. According to PRG7, people are informed 
about the restrictions (and the latter are intro-
duced) starting from the time t = 0. An analysis of 
Table 5 shows that introducing these measures with 
a shift of 50 weeks does not lead to any appreciable 
results. A significant effect in the form of morbidi-
ty peaks shifting to the right is observed only when 
restrictions are introduced from the time t = 0.
Modeling the impact of epidemiological informa-
tion programs on the economic performance of 
the population suggested that PRG5 was the best 
one: the effect of its implementation to inform the 
population of both cities about the need for vac-
cination was 149.3 CEU. PRG7 (which provided for 
severe restrictions on travel) was the least effective 
in this regard.
Let us consider the features of the epidemic’s de-
velopment in four cities (Figure 2a) taking into 

Transi-
tions

Transition rates

1 2 0.750∙P3(t)
6 7 0.750∙P8(t)
1 4

0.0007
6 9
2 3

0.21
7 8
3 4

0.1
8 9
1 5

0.000235
6 10
2 5

0.000235
7 10
3 5

0.0011
8 10
4 1 0.0007

Таble 3. Initial transition rates

Transi-
tions

Transition rates

9 6 0.0007
4 5

0.000235
9 10
5 1

0.39
10 6
5 4

0.39
10 9
1 6 0.00084
6 1 0.00056
2 7 0.00084
7 2 0.00056
3 8 0.00084
8 3 0.00056
4 9 0.00084
9 4 0.00056

Source: authors.

vulnerable to the infection in the first and second 
cities over time. Figure 3b, 3c, 3d, and 3e show the 
probabilities that the populations of the two cit-
ies are in states 2, 7 (infected, no symptoms); 3, 8 
(infected with symptoms); 4, 9 (healthy with im-
munity); and 5, 10 (dead). Figure 3f presents the 
dependencies and the economic performance of 
the population in the analyzed cities when the ini-
tial epidemiological information program is imple-
mented:

 ,
.
The expected total economic effect WZ (PRGs, ∆T) 
for the case under consideration during a 150-week 
interval was 143.5 conventional economic units 
(CEU), of which 57.5 CEU fell to the first city, and 
86.0 CEU to the second one.
As shown in Figure 3, over time the number of 
healthy people vulnerable to the infection rapidly 
declines, while the number of infected people in-
creases. However, in the first city, the highest num-
ber of infected people with symptoms falls in the 
70th week, and in the second in the 80th. In the sec-
ond city, infection is transmitted by people cross-
ing the border between the cities by air, land, and 
water. Relative mortality in the second city peaks at 
0.00036, which is 1.94 times higher than the initial 
one. With the input data used, the largest economic 
downturn occurs in week 80.
Note that at the time t = 0, the number of infect-
ed in the first city amounted to 0.1% of the total 
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Figure 3. Epidemic development in connected cities if no additional epidemiological  
informing measures are taken

Source: authors.
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account the response measures. According to the 
model, population in each city can be in three 
states: 1, 4, 7, 10 (healthy population vulnerable to 
the infection); 2, 5, 8, 11 (infected population); and 
3, 6, 9, 12 (recovered population). Let us assume 
immunity after recovery or vaccination will last for 
two years. The infection originated in the first city. 
The population distribution by city is (0.3, 0.2, 0.2, 
0.3). The conditions for countering the pandemic 
through epidemiological information sharing with 
the public in the first, third, and fourth cities are 
the same. In the second city, the possibilities of 
treating the sick are more limited. The results of 
modeling the development of the epidemic using 
this model are shown in Figure 4.

Figure 4a shows the time dependencies of the prob-
ability that cities are in states 1, 4, 7, 10 (healthy 
population vulnerable to the infection). Similar 
dependencies for states 2, 5, 8, 11 (infected popula-
tion) are shown in Figure 4b. If the epidemic de-
velops this way, and the population have limited 
immunity, pronounced waves can be observed 
during a 700-week interval (see Figures 4a and 4b). 
An analysis of Figure 4 reveals that without spe-
cial measures, the infection can persist in the cit-
ies for many years. The duration depends upon the 
structure of passenger flows, the distance between 
the cities, population density, the epidemiological 
response measures implemented, virus mutations, 
weakening of immunity over time, and so on. Since 
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Epidemiological 
informing programme

City 1 City 2 Cities1, 2

PRG 1 143.5

PRG 2 138.8

PRG 3 131.5

PRG 4 145.6

PRG 5 149.3

PRG 6 131.5

PRG 7 130.6

Source: authors.

Таble 4. Impact of epidemiological information programmes on health and economic performance of 
population in two connected cities

Programme 
code Description

PRG1 Ongoing (basic) programme to inform the public, not really tailored to the actual epidemic specifics.
PRG2 Additional programme to further inform the population of the first city about the need to wear protective masks and 

maintain social distance. The second city is informed in the usual way.
PRG3 A programme to inform the population of both cities about the need to wear protective masks and maintain social 

distance.
PRG4 A programme to inform the population of the first city about the need for vaccination.
PRG5 A programme to inform the population of both cities about the need for vaccination.
PRG6 Awareness programme on restrictions on travel between the first and second cities starting from week 50.
PRG7 A programme to inform the population about the restrictions on travel between the first and second cities starting from 

time t = 0.

Source: authors.

Таble 5. Alternative epidemiological information programmes

P10(t)

P1(t)
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Source: authors.

Figure 4. Assessment of epidemic development in connected cities using the model in Fig. 3a

b
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Cities and regions Date in 2020
Moscow 14 May
Murmansk 13 July
Nizhny Novgorod 26 September
Khabarovsk region 11 October
St. Petersburg 21 October
Voronezh region 26 October
Krasnoyarsk region 5 November
Primorsky region 15 November
Sverdlovsk region 20 November
Rostov region 5 December
Novosibirsk 30 December
Chelyabinsk region 30 December

Source: authors.

Таble 6. Period of time 1% infection rate was 
achieved in selected Russian regions
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Figure 5. Assessment of epidemic development in connected cities using the model in Fig. 3b

а b

To compare the modeling results with the existing 
statistical data (see Table 2), Table 6 was compiled 
showing the dates when a number of Russian re-
gions reached the 1% COVID-19 infection rate. An 
analysis of this data shows that the obtained simu-
lation results do not contradict the available sta-
tistics.

Conclusion
This study presents a method for quantifying epi-
demiological information programs in connected 
cities and new epidemic development and response 
models. New correlations have been revealed be-
tween the indicators describing public information 
programs, the state of public health, and economic 
performance. The results obtained allow one to 
confirm a strong correlation between the three 
above elements. The economic costs of epidemics 
that can be taken into account in forecasting in-
clude the costs of medical and preventive measures, 
informing the public about epidemic response, 
temporary disability compensation, etc.
The proposed method helps one find evidence-
based epidemiological response solutions by esti-
mating the effectiveness of planned measures. The 
developed models can be applied to assess current 
and future waves of epidemics, and their impact 
upon the economy and businesses. The models 
the presented method is based upon are also suit-
able for determining the location and time of the 
onset of an infection. The method is applicable to 
advanced epidemiological policy decision support 
information systems.

The study was supported by the Russian Foundation 
for Basic Research, project number 20-04-60455.

the pace of epidemiological development in large 
cities is much higher than in small towns, this 
alone can create wave patterns.
When additional epidemiological measures are im-
plemented, the model in Figure 2a can be changed 
as shown in Figure 2b, where the infection prolif-
erates sequentially from the first to the fourth city 
and then returns to the first one. Simulation results 
(Figure 5) for this model are more undulatory than 
those in Figure 4. Following the epidemic response 
measures, the incidence rates in the second, third, 
and fourth cities (Figure 5b) decreased compared 
with Figure 4b, while the incidence peaks signifi-
cantly shifted over time.



2022      Vol. 16  No 2 FORESIGHT AND STI GOVERNANCEFORESIGHT AND STI GOVERNANCE 89

References

Osipov V., Osipova M., Kuleshov S., Zaytseva A., Aksenov A., pp. 80–89

Abdulai A.-F., Tiffere A.-H., Adam F., Kabanunye M.M. (2021) COVID-19 information-related digital literacy among 
online health consumers in a low-income country. International Journal of Medical Informatics, 145, 104322. https://doi.
org/10.1016/j.ijmedinf.2020.104322

Bellman R. (1983) Mathematical methods in medicine, Singapore: World Scientific.
Browne C., Gulbudak H., Webb G. (2015) Modeling contact tracing in outbreaks with application to Ebola. Journal of 

Theoretical Biology, 384, 33–49. https://doi.org/10.1016/j.jtbi.2015.08.004
Chubb M.C., Jacobsen K.H. (2009) Mathematical modeling and the epidemiological research process. European Journal of 

Epidemiology, 25(1), 13–19. DOI 10.1007/s10654-009-9397-9
Da Silva R.G., Ribeiro M.H.D.M., Mariani V.C., Coelho L. (2020) Forecasting Brazilian and American COVID-19 cases based 

on artificial intelligence coupled with climatic exogenous variables. Chaos, Solitons and Fractals, 139, 110027. https://doi.
org/10.1016/j.chaos.2020.110027

Holko A., Mȩdrek M., Pastuszak Z., Phusavat K. (2016) Epidemiological modeling with a population density map-based 
cellular automata simulation system. Expert Systems with Applications, 48, 1–8. https://doi.org/10.1016/j.eswa.2015.08.018

Hu Z., Ge Q., Li S., Boerwinkle E., Jin L., Xiong M. (2020) Forecasting and Evaluating Multiple Interventions for COVID-19 
Worldwide. Frontiers in Artificial Intelligence, 3. https://doi.org/10.3389/frai.2020.00041

Katris C. (2021) A time series-based statistical approach for outbreak spread forecasting: Application of COVID-19 in Greece. 
Expert Systems with Applications, 166, 114077. https://doi.org/10.1016/j.eswa.2020.114077

Levashkin S.P., Zakharova O.I., Kuleshov S.V., Zaytseva A.A. (2021) Adaptive-compartmental model of coronavirus epidemic 
and its optimisation by the methods of artificial intelligence. Journal of Physics: Conference Series, 1864(1), 012108. 
DOI:10.1088/1742-6596/1864/1/012108

Liu N., Chen Z., Bao G. (2020) Role of Media Coverage in Mitigating COVID-19 Transmission: Evidence from China. 
Technological Forecasting and Social Change, 163, 120435. https://doi.org/10.1016/j.techfore.2020.120435

Lukyanovich A., Aflyatunov T. (2015) The Analysis of Possibilities of Active Information of the Impact of Mass Media on the 
Population in Emergency Situations. Civil Security Technology, 12(4), 62-68 (in Russian).

Medrek M., Pastuszak Z. (2021) Numerical simulation of the novel coronavirus spreading. Expert Systems with Applications, 
166, 114109. https://doi.org/10.1016/j.eswa.2020.114109

Nadella P., Swaminathan A., Subramanian S.V. (2020) Forecasting efforts from prior epidemics and COVID-19 predictions. 
European Journal of Epidemiology, 35(8), 727–729. https://doi.org/10.1007/s10654-020-00661-0

Newbold P., Granger C.W.J. (1974) Experience with Forecasting Univariate Time Series and the Combination of Forecasts. 
Journal of the Royal Statistical Society. Series A (General), 137(2), 131–165. https://doi.org/10.2307/2344546

Osipov V., Kuleshov S., Zaytseva A., Levonevskiy D., Miloserdov D. (2021) Neural network forecasting of news feeds. Expert 
Systems with Applications, 169, 114521. https://doi.org/10.1016/j.eswa.2020.114521

Papa A., Mital M., Pisano P., Del Giudice M. (2020) E-health and wellbeing monitoring using smart healthcare devices: 
An empirical investigation. Technological Forecasting and Social Change, 153, 119226. https://doi.org/10.1016/j.
techfore.2018.02.018

Qazi A., Qazi J., Naseer K., Zeeshan M., Hardaker G., Maitama J.Z., Haruna K. (2020) Analyzing situational awareness through 
public opinion to predict adoption of social distancing amid pandemic COVID-19. Journal of Medical Virology, 92(7), 
849–855. https://doi.org/10.1002/jmv.25840

Tiwari P.K., Rai R.K., Khajanchi S., Gupta R.K., Misra A.K. (2021) Dynamics of coronavirus pandemic: Effects of community 
awareness and global information campaigns. The European Physical Journal Plus, 136(10), 994. https://doi.org/10.1140/
epjp/s13360-021-01997-6

Wu Q., Fu X., Small M., Xu X.-J. (2012) The impact of awareness on epidemic spreading in networks. Chaos: An Interdisciplinary 
Journal of Nonlinear Science, 22(1), 013101. https://doi.org/10.1063/1.3673573

Zhou W., Wang A., Xia F., Xiao Y., Tang S. (2020) Effects of media reporting on mitigating spread of COVID-19 in the early 
phase of the outbreak. Mathematical Biosciences and Engineering, 17(3), 2693–2707. DOI: 10.3934/mbe.2020147


